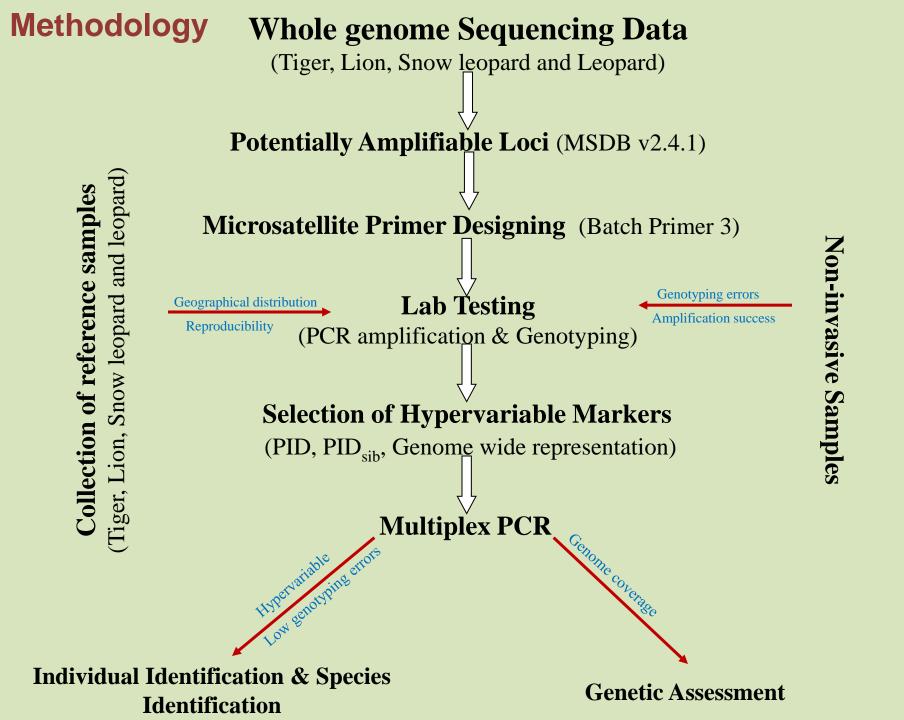
Mining microsatellites markers for big cats (Genus: *Panthera*; Oken 1816) using next generation sequencing data

Why?

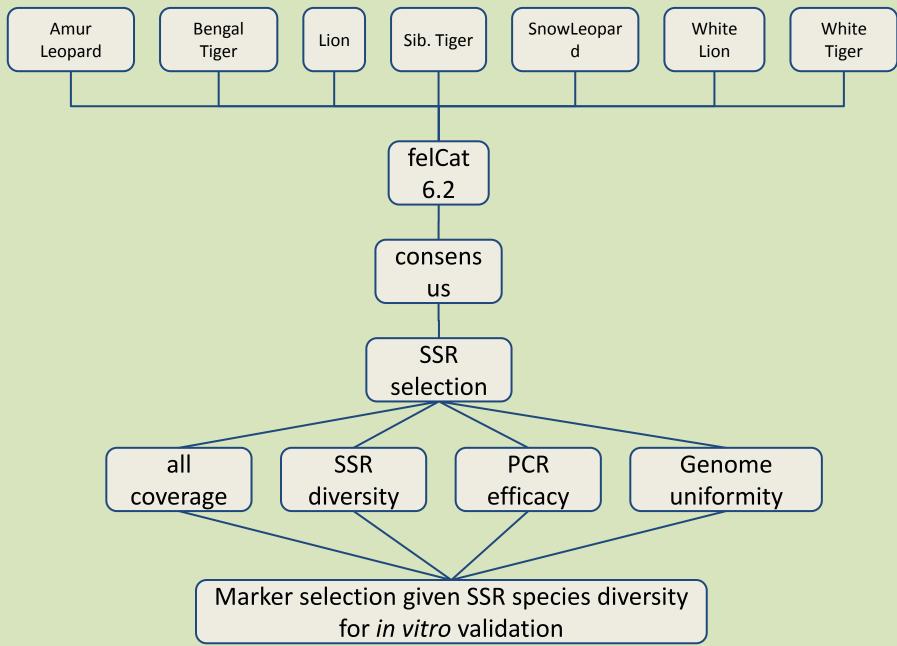
- Except for Tigers and Lions, species specific microsatellite markers were not developed for big cats
- Most of the genetic studies have used heterologous markers (mainly *Felis catus* microsatellite markers)
- Heterologous markers show less polymorphism with greater
- chances of null alleles (Lopes et al 2010)

A need for microsatellite marker development

Microsatellite development using whole genome sequencing data is not only efficient but also cost effective as compared to traditional approaches (Vartia *et al.*, 2014).



Objectives


- Screening and selection of **polymorphic microsatellite markers** with conserved flanking regions across big cats
- Optimization of polymorphic markers to develop multiplex
 PCR system for species, sex, individual identification; and for genetic assessment (with wider genome coverage) of all big cat species and subspecies

Benefits

- A multi-utility **simplified multiplex PCR kit** (like human identification kit, Canine or Bovine genotyping kit) approach that may be used by veterinarians or biologist in zoological parks, natural reserves etc.
- Selection and optimization of hypervariable markers in multiplex PCR will reduce cost of sample processing.
- Use of uniform microsatellite markers will lead to development of **consensus database** and such data may be used for future conservation studies.

Initial Findings

Initial Findings

	3uniq/7	4uniq/7	5uniq/7	6uniq/7
Possible Variants (Union 5 samples)	80474871	80474871	80474871	80474871
Filtered (no het, DP>4, #uniqAlleles, INDEL)	282202	49107	8947	1261
Unique Variant Positions	234310	37659	6283	822
All sample cov (DP>4 for 300bp region: +-150 bp flanking)	75398	14807	3026	396
Total Variants Within Regions	825946	174127	31849	4529
Consensus Generation	62526	12483	2614	351

Initial Findings

• Microsatellite primer selection and designing

Microsatellite Repeat	Batch Primer 3 (default settings)	Primers screened (no secondary structure and high GC content)
Di-nucleotides	704	45
Tri-nucleotides	155	16
Tetra-nucleotides	179	20
Penta-nucleotides	43	2
Hexa-nucleotides	12	0

Way Ahead

- **Reference sample collection** (different species, subspecies) across the distribution range
- PCR validation of primers and optimization of multiplex PCR system
- Collection of fecal samples (wild) to applicability of developed marker system for species identification and genetic assessment

Special Thanks to:

- Mr. Puneet Pandey (Wildlife Institute of India)
- Dr. Jong Bhak (Ulsan National Institute of Science and Technology)
- Dr. Alvin Chon (Ulsan National Institute of Science and Technology)