The Flue Gas Cleaning System applied to Hitachinaka P.S.

2008.12.17 TEPCO Thermal Power Engineering Center Shigehiro Matsuda

Agenda

- 1. Introduction
- 2. The design of the Flue Gas Cleaning System applied to Hitachinaka
- 3. Denitrification Technology
- 4. Dust Removal Technology
- 5. Desulfurization Technology

o electric power compan

1. Introduction

Hitachinaka P.S. Location

Tokyo electric

Hitachinaka P.S.

Tokyo electric power company

Hitachinaka P.S. Out line

- ➢ Out Put: 1000MW
- Steam condition: USC24.5MPa, 600/600deg.C
- Efficiency: 44.9% (Gen. Terminal, LHV)
- \triangleright Direct cool with sea water
- Coal Storage capacity: 400 K ton
- Environment measures: SCR, ESP, FGD

okyo electric power compan

2. The design of the Flue Gas Cleaning System applied to Hitachinaka

The Flue Gas Cleaning System

Layout of the Flue Gas Cleaning System

okyo electric power company 🚽 🗕

Specification of Air pollution

		Hitachinaka	Hirono
SOx	Rate	95%	96%
	Concentration	39ppm	24ppm
NOx	Rate	85%	87%
	Concentration	34ppm	24ppm
Dust	Rate	99.96%	99.96%
	Concentration	8mg/m ³ N	7mg/m ³ N

OKYO ELECTRIC POWER COMPANY

3. Denitrification Technology

A sort of Denitrification

'okyo electric power compai

Low NOx Burner

- High PC concentration area: Volatile matter combustion
- Low PC concentration area: NOx Reduction

Reduce 35-40% of ordinary existing burner

(YO ELECTRIC POWER COMPANY

Two staged Combustion

NOx combined at main burner Reduced by CO, H

kyo electric power company

Summery of De-NOx in Boiler

- These can reduce 40-50% at outlet of boiler comparing to the case without the system.
- Example for NOx of Boiler outlet Hitachinaka is about 200ppm

Process principle of SCR

- By catalytic reduction with NH₄ injection, NOx is reduced to N₂ and water .
- Catalyst has the porus-shaped structure. Flue gas come into the hole and discomposed.
- Reactive temperature is 200-400 deg.C.
- $4NO+4NH_3+O_2 \rightarrow 4N_2+6H_2O$

Feature of SCR

• Denitrification rate:

85%

- NOx outlet concentration: 34ppm
- Temperature control is important to prevent the deterioration of performance.
- Controlling the volume of Ammonia and using the low-oxidation catalyst prevent acid ammonium sulfate from occurring.

4. Dust removal Technology

A sort of Dust Removal

D ELECTRIC POWER COMPANY

Feature of Dry ESP

- Removal rate is more than 99.9% and overall rate 99.96% with FGD.
- Dust concentration is $8mg/m^3N$. (FGD outlet)
- Dust collecting performance is greatly influenced by characteristic of electric resistance, The influenced parameter are:

1. Flue gas temperature.

2. Coal and ash composition structure.

O ELECTRIC POWER COMPANY

5. Desulfurization Technology

A Sort of FGD

Limestone-gypsum method Basic Principle

- System consists of absorption (spray) tower including dust removal function and waste water treatment device
- Spray the slurry to flue gas, Absorption happens and sulfur dioxide is removed
- Lime stone reacts with sulfur dioxide, Gypsum is collected as by-product
- $CaCO_3 + SO_2 + 1/2O_2 + H_2O \rightarrow CaSO_4 \cdot 2H_2O + CO_2$

Feature of Lime stone-gypsum method

95%

- Desulfurization rate:
- SOx outlet concentration: 39ppm
- pH control is important to prevent the deterioration of performance.
- Lime stone is abundance and inexpensive in Japan.
- Gypsum is usefulness for Large space of land is required

The world's cleanest production of electrical power

International comparison of SOx and NOx emission intensity (average for thermal power stations)

Source:

Japan: Research by the Federation of Electric Power Companies of Japan

Other countries: Calculations based on "OECD Environmental Data Compendium 2006/2007" and "Energy Balances of OECD Countries 2004-2005"

* Data from FY2005 for other nations besides Japan and TEPCO

kyo electric power company