

AIR QUALITY IN MONGOLIA – CHALLENGES, INITIATIVES AND NEEDS OF NATIONAL ENVIRONMENTAL LABORATORY

NEACAP National Workshop on Air Quality Management in Mongolia:

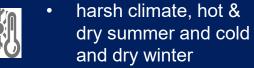
Developments and Prospects

Ulaanbaatar, Mongolia

24 September 2025

Tsatsral Batmunkh
Central Laboratory of Environment and Metrology, NAMEM

CONTENTS


- 1. AIR QUALITY MONITORING, QA/QC, DATA MANAGEMENT
- 2. ANALYTICAL RESEARCH ON EMISSION SOURCES AND AIR POLLUTION COMPONENTS
- 3. CAPACITY NEED FOR STRENGTHENING NATIONAL LABORATORY SYSTEMS

INTRODUCTION

Mongolia:

Ulaanbaatar- the coldest capital

NATURALLY

Ulaanbaatar:

- surrounded by high mountains
- socated in valley

Affected by atmospheric circulation

AIR POLLUTION

- **> Sulfur dioxide SO2**
- ➤ Nitrogen dioxide NO2
- > Carbon monoxide CO
- **➢ Ozone O3**
- > Particulate matter PM2.5
- > Particulate matter PM10
- **➢ Organics**,
- **≻**Heavy metals,
- **≻lons**

Vehicles - 10%

TPP - 6%

Others - 4%

NATIONAL AIR QUALITY MONITORING NETWORK

In 1976:

- first manual AQMS

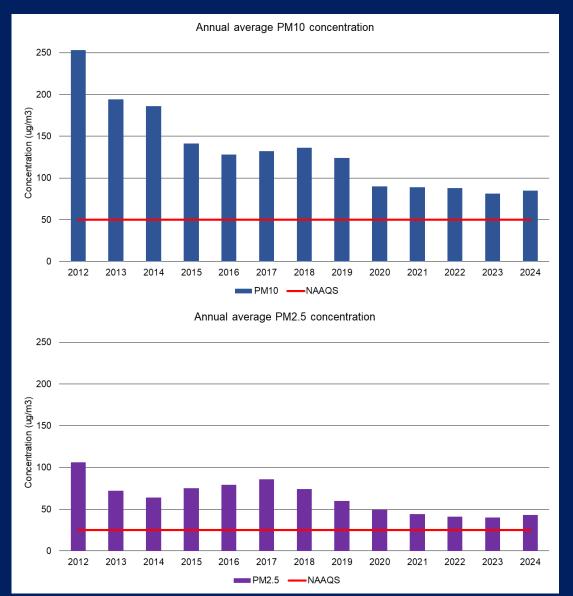
In 2009:

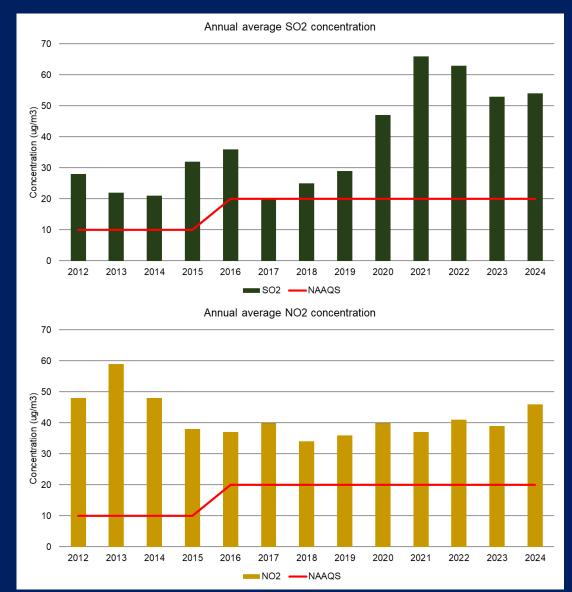
- first automatic AQMS

2025: Nationwide automatic AQMS - 40

19 of 40 are located in Ulaanbaatar, capital of Mongolia.

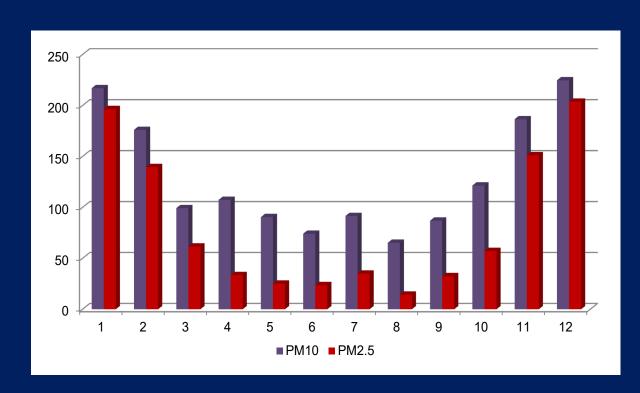
AIR QUALITY STANDARDS

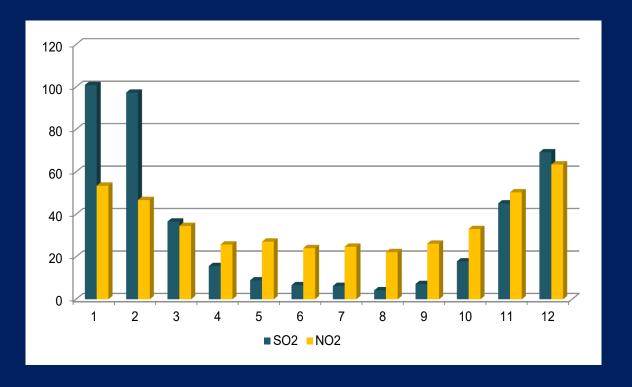

In Mongolia, the National Ambient Air Quality Standard (NAAQS) was promulgated in 1978 and subsequently revised in 1998, 2007, 2016, and 2025.


Parameters, unit	Average time	Mongolia MNS4585:2025	China GB3095-2012		Korea	USA
			Level 1	Level 2		
PM2.5, ug/m ³	24 hour	37.5	35	75	35	35
	Annual	15	15	35	15	9
PM10, ug/m3	24 hour	100	50	150	100	150
	Annual	50	40	70	50	-
NO2, ug/m3	20 min	200	-	-	-	-
	1 hour	-	200	200	191	-
	24 hour	50	80	80	115	191
	Annual	30	40	40	57	100
SO2, ug/m3	20 min	450			-	-
	24 hour	50	50	150	132	200
	Annual	20	20	60	53	-
CO, mg/m3	20 min	60		<u>-</u>	-	_
	1 hour	30	10	10	-	-
	8 hour	-		-	_	_
	24 hour	4	4	4	10	10
O3, ug/m3	8 hour	100	100	160	120	140

AIR QUALITY

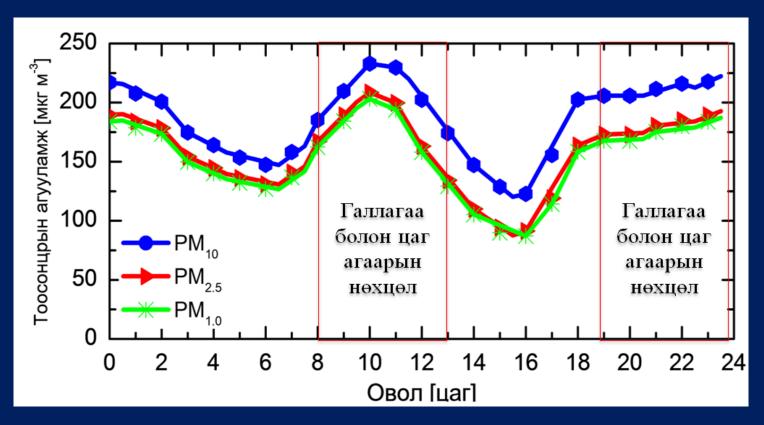
Annual average of the PM₁₀, PM_{2.5}, SO₂, and NO₂ from 2012-2024





AIR QUALITY

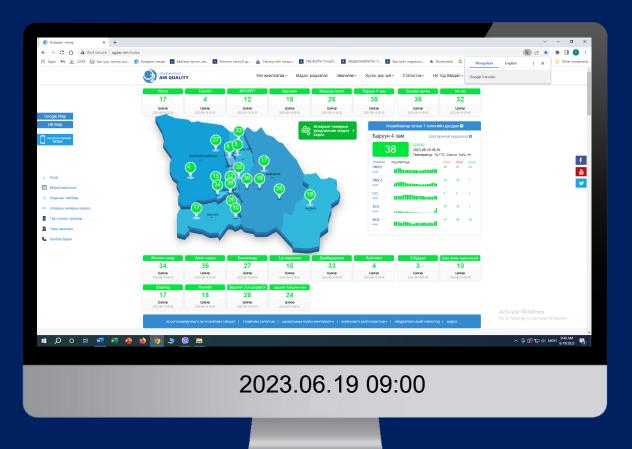
Monthly variation of air pollution in Ulaanbaatar



Strong monthly/seasonal variation, winter high and summer low, was observed for coarse and fine particulate matters as well sulfur dioxide due to usage of coal.

AIR QUALITY

Diurnal variation of particulate matter in Ulaanbaatar during the winter season /near Nisekh/



- Strong diurnal variation was observed due to space heating and weather condition.
- Fine particles consists of more than 85% of coarse particles during the winter time in Ulaanbaatar, indicating pollution is mainly from burning activities.

INFORMATION SYSTEM

www.agaar.mn

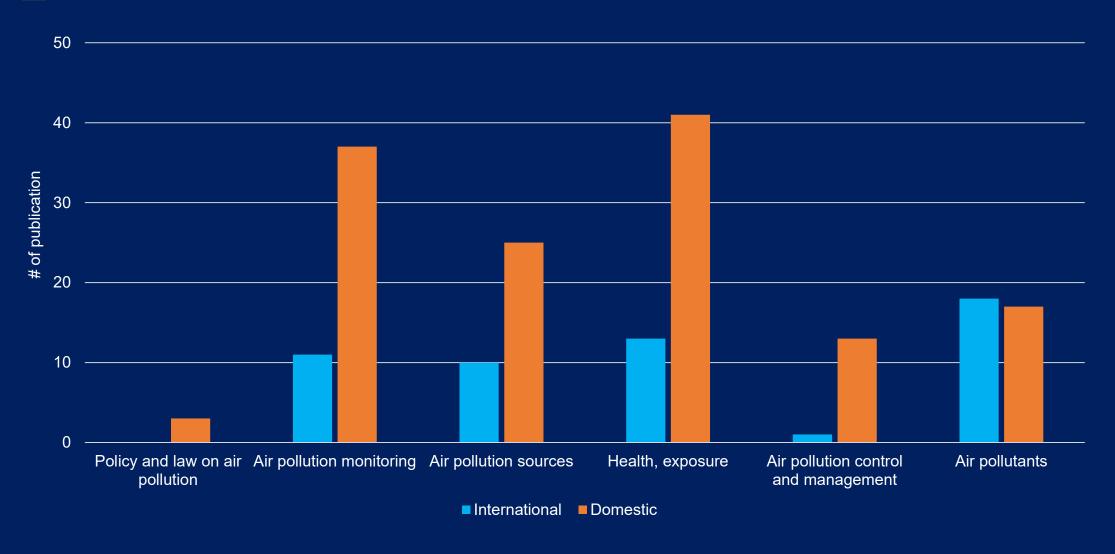
O2 application

QUALITY ASSURANCE/QUALITY CONTROL

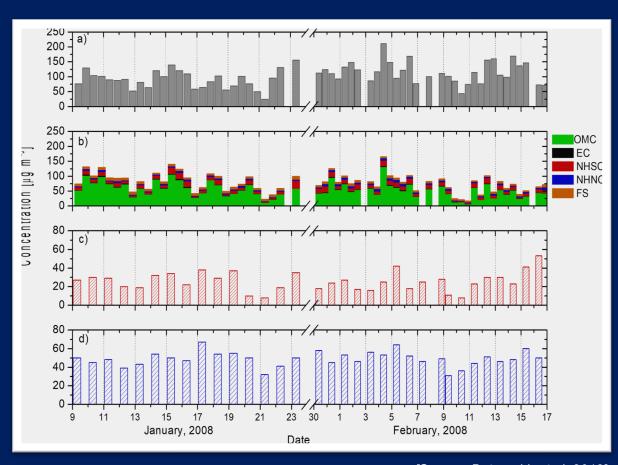


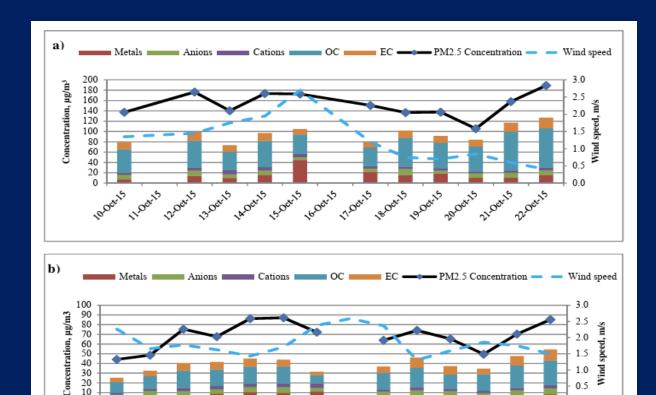
COMPARISON BETWEEN DOMESTIC LABORATORIES						
Sample	SO _{2 min} mg/mL	SO _{2 max} mg/mL	NO _{2 min} mg/mL	NO _{2 max} mg/mL		
CLEM	0.433	1.733	0.453	1.360		
21-Lab	0.431	1.849	0.409	1.324		
Sample	рН	SS mg/L	COD mg/L	BOD mg/L		
CLEM	6.55	194	401	188		
WSSA	6.67	169	386	164		
Sample	•	HCO ₃ mg/L	COD – Mn mg/L	ЕС мкСи/см		
CLEM		37.8	2.4	83.7		
"Green Lab" LLC		37.0	2.5	83.4		

QUALITY ASSURANCE/QUALITY CONTROL


COMPARISON BETWEEN INTERNATIONAL LABORATORIES

pH n	EC nS/cm				CI ⁻ mg/L
6.40	2.92	0.112	4.0	05 0.62	1.89
7.06	3.03	0.119	3.8	83 0.55	1.75
рН			SO ₄ ²⁻ mg/L	NO ₃ - mg/L	CI ⁻ mg/L
5.54 5.98			2.27 2.00	3.20 2.41	1.03 0.89
	6.40 7.06 pH	mS/cm 6.40 2.92 7.06 3.03 pH E0 mS/	mS/cm meq/L 6.40 2.92 0.112 7.06 3.03 0.119 pH EC mS/cm	mS/cm meq/L mg 6.40 2.92 0.112 4.0 7.06 3.03 0.119 3.0 pH EC SO ₄ ²⁻ mg/L 5.54 16.1 2.27	mS/cm meq/L mg/L mg/L 6.40 2.92 0.112 4.05 0.62 7.06 3.03 0.119 3.83 0.55 pH EC SO ₄ ²⁻ NO ₃ - mg/L 5.54 16.1 2.27 3.20


STUDIES ON AIR POLLUTION



ANALYTICAL RESEARCH ON EMISSION SOURCES AND AIR POLLUTION COMPONENTS

17.00t/15

18-00t-15

19.00t.15

20-Oct-15

21.001.15

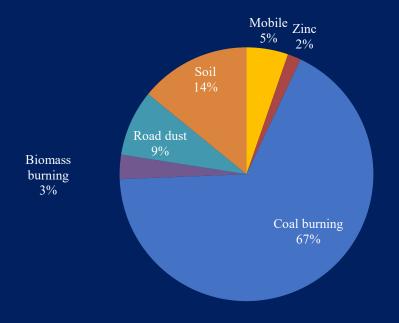
[Source: Batmunkh et al. 2013]

[Source: Baldorj et al. 2015]

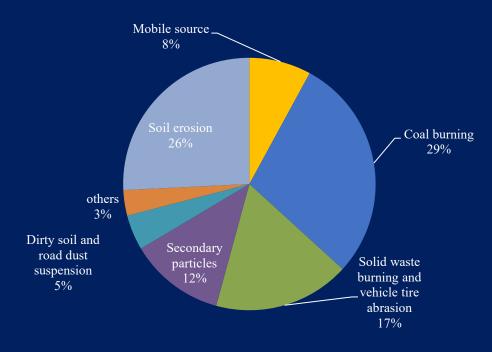
ANALYTICAL RESEARCH ON EMISSION SOURCES AND AIR POLLUTION COMPONENTS

Air Sampling

Chemical analysis of particulate matter



Emission sources of PM (PMF, CMB)



Results

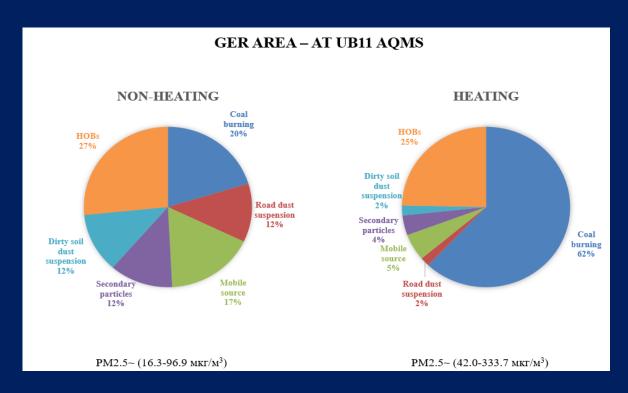
PM2.5 source contribution in UB (winter season 2004-2008)

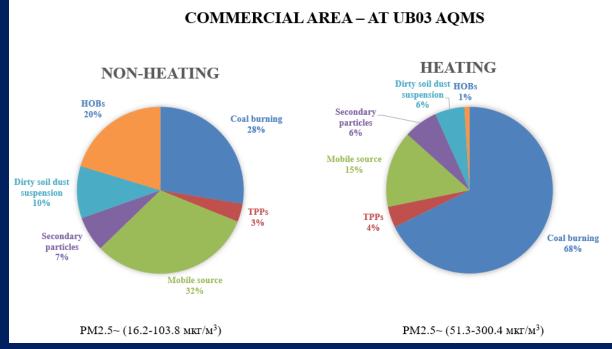
PM2.5 source contribution in UB season 2014-2016) (all

[source: Davy et al. 2011] [source: JICA 2017]

IDENTIFICATION OF AIR POLLUTION SOURCES

Air Sampling


Chemical analysis of particulate matter

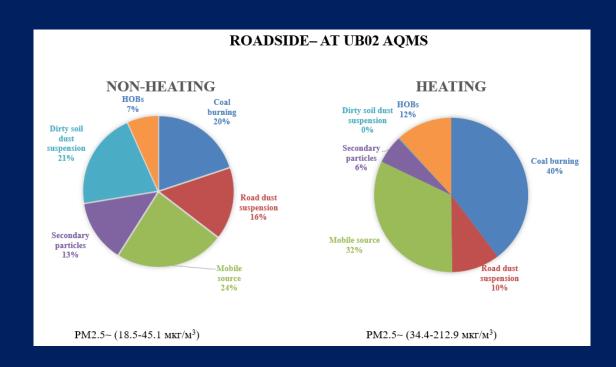


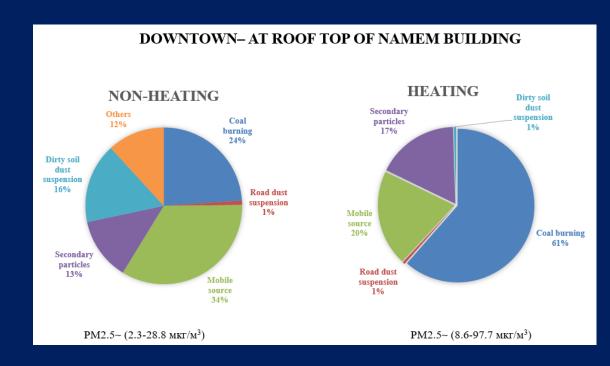
Emission sources of PM (PMF, CMB)

Results

ANALYTICAL RESEARCH ON EMISSION SOURCES AND AIR POLLUTION COMPONENTS

Air Sampling


Chemical analysis of particulate matter



Emission sources of PM (PMF, CMB)

Results

CHALLENGES

Air pollution remains a serious challenge for Mongolia, especially in Ulaanbaatar. However, through national actions, legal frameworks, and international collaboration, we are making progress toward cleaner, healthier air.

Air pollution emission sources are highly depending on sampling sites and sampling time. Hence, in order to implement air pollution control measures, target area and time should be considered.

The expansion of monitoring capacity and integration of new technologies are critical steps forward.

EXPANSION OF THE CENTRAL LABORATORY OF ENVIRONMENT MONITORING

PURPOSE OF THE PROJECT

- ➤ building the Central Laboratory for Environmental Monitoring (CLEM) and introducing new analysis equipment and
- improving air pollution measurement system

EXPANSION OF THE CENTRAL LABORATORY OF ENVIRONMENT MONITORING

Highly sensitive and precise analytical instruments will be installed.

- Pollutants organics: PCBs,
 PAHs, POPs, VOCs
- Heavy metals: As, Pb, Cu, Zn,
 Ni, Li, Mo, Mn, Se, V, Fe, Cd,
 Cr, Ca

- 4-floor new laboratory building
- More than 100 parameters will be analyzed.

Expanding air quality monitoring network

The capacity of engineers and technicians will be improved.

- Organics: GC-MS/FID/ECD, HPLC
- Heavy metal: ICP-MS, ICP-OES, XRF
- Carbon analyzer: ECOC, TOC

THANK YOU FOR ATTENTION.